Notation

Appendix I. Appendix

I.1. Finite dimensional function spaces of observable functions

Given a set of observable functions $\mathbb{I}_{\mathcal{X}} = \{x_1, \ldots, x_m \mid x_i : \Omega \mapsto \mathbb{R}, \forall i \in [1, m]\},\$ we can interprete these functions as the components of a vector-valued function $x = [x_1, \dots] : \Omega \mapsto \mathbb{R}^m$, that enables the numerical representation of the state ω as a point in a finite-dimensional vector space $x(\omega) \in \mathcal{X} \subseteq \mathbb{R}^m$. For the objective of our work, we will also interprete $\mathbb{I}_{\mathcal{X}}$ as the basis set of a finitedimensional function space $\mathcal{F}_{\mathcal{X}} : \Omega \mapsto \mathbb{R}$, such that any observable function $x \in \mathcal{F}_{\mathcal{X}}$ is defined by the linear combination of the basis functions $x_{\alpha}(\omega) := \langle x(\cdot), \alpha \rangle = \sum_{i=1}^{m} \alpha_i x_i(\omega) = x(\omega)^{\dagger} \alpha$. Where $\alpha = [\alpha_1, \dots] \in \mathbb{R}^m$ are the coefficients of x in the basis of \mathcal{F}_χ , and the notation $x_{\alpha}(\cdot)$ highlight the relationship between the function x and its coefficient vector representation α .

I.1.1. SYMMETRIES OF THE STATE REPRESENTATION

When the dynamical system possess a state symmetry group \mathbb{G} (def. 1), appropriate numerical representations of the state are constrained to be G-equivariant vector-value functions (see eq. (8) and prop. 2). This ensures that the symmetry relationship between any state $\omega \in \Omega$ and its symmetric states $\mathbb{G}\omega := \{g \triangleright \omega \mid g \in \mathbb{G}\}\$ is preserved in the representation space X, such that $\mathbb{G}x(\omega) = \{g \triangleright x(\omega) \mid g \in \mathbb{G}\}\subset \mathcal{X}$.

$$
\omega \xrightarrow{g \in \mathbb{G}} g \triangleright \omega \qquad (8)
$$

$$
\downarrow x
$$

$$
x(\omega) \xrightarrow{g \in \mathbb{G}} g \triangleright x(\omega)
$$

I.1.2. SYMMETRIC FUNCTION SPACES

When X is a \mathbb{G} -symmetric space, the group is defined to act on any chosen basis set of the space, including the observable functions $\mathbb{I}_{\mathcal{X}}$. This, in turn, ensures that the finite-dimensional function space span($\mathbb{I}_{\mathcal{X}}$) := $\mathcal{F}_{\mathcal{X}}$: $\Omega \mapsto \mathbb{R}$ features the symmtry group \mathbb{G} , being the elements of the space \mathbb{G} equivariant functions, i.e., $\mathcal{F}_{\mathcal{X}} = \{x \mid g \triangleright x_{\alpha}(\omega) = x_{\alpha}(g^{-1} \triangleright \omega) = x_{g \triangleright \alpha}(\omega), \forall g \in \mathbb{G}\}\$ (see [def. 2\)](#page-1-1). Where the notation $g \triangleright x_{\alpha}(\omega) = x_{g \triangleright \alpha}(\omega)$ describes the action of a symmetry transformation on a observable function, as a linear transformation on its coefficients vector representation α .

I.2. Group and representation theory

Definition 2 (Group action on a function space) *The (left) action of a group* G *on the space of functions* $X : \Omega \to \mathbb{C}$ *, where* Ω *is a set with symmetry group* \mathbb{G} *, is defined as:*

$$
\begin{array}{cccc}\n(\triangleright): & \mathbb{G} \times \mathcal{X} & \longrightarrow & \mathcal{X} \\
(g, x(\omega)) & \longrightarrow & g \triangleright x(\omega) \doteq x(g^{-1} \triangleright \omega)\n\end{array} \tag{9a}
$$

From an algebraic perspective, the action inversion [\(contragredient representation\)](https://math.stackexchange.com/questions/387266/group-action-on-vector-space-of-all-functions-g-to-mathbbc) emerges to ensure that the symmetry group in the function space is a homomorphism of the group in the domain $(g_1 \triangleright g_2) \triangleright x(\omega) \doteq x((g_1 \triangleright g_2)^{-1} \triangleright \omega)$. Which can be proven by a couple of algebraic steps:

$$
(g_1 \triangleright (g_2 \triangleright x))(\omega) = (g_1 \triangleright x_{g_2})(\omega) = g_2 \triangleright x(g_1^{-1}\omega) = x((g_2^{-1} \triangleright g_1^{-1}) \triangleright \omega) = x((g_1 \triangleright g_2)^{-1} \triangleright \omega)
$$
\n(9b)

From a geometric perspective, when X *is a separable Hilbert space, each function can be associated with its vector of coefficients representation* $x_{\alpha}(\cdot) := \sum_{i=1}^{m} \alpha_i x_i(\cdot) = x(\cdot)^{\dagger} \alpha$ *. Here,* $x =$ $[x_1, \ldots]$ *represents the basis functions of* X. As the function space is symmetric, the group \mathbb{G} *acts on the basis set, leading to a group representation acting on the basis functions* $g \triangleright x(\cdot) =$ $\rho_X(g)\mathbf{x}(\cdot)$ *. The unitary representation of the group* G *on the function space is denoted by* ρ_X : $\mathbb{G} \to \mathbb{U}(\mathcal{X})$, which is an invertible matrix/operator. This representation enable us to interpret the

symmetry transformations of the function space as point transformations, where the points are the function's coefficient vector representation α *, that is:*

$$
g \triangleright x_{\alpha}(\cdot) := \sum_{i=1}^{m} \alpha_{i} x_{i} (g^{-1} \triangleright \cdot)
$$

\n
$$
= (\boldsymbol{x} (g^{-1} \triangleright \cdot))^\intercal \alpha
$$

\n
$$
= (g^{-1} \triangleright \boldsymbol{x} (\cdot))^\intercal \alpha
$$

\n
$$
= \boldsymbol{x} (\cdot)^\intercal g \triangleright \alpha
$$

\n
$$
= x_{g \triangleright \alpha} (\cdot)
$$
 (10)

Lemma 1 (Schur's Lemma for Unitary representations (Knapp, 1986, Prop 1.5)) *Consider two Hilbert spaces,* X *and* X ′ *, each with their respective irreducible unitary representations, denoted as* $\bar{\rho}_{\mathcal{X}}:\mathbb{G}\to\mathbb{U}(\mathcal{X})$ and $\bar{\rho}_{\mathcal{X}'}:\mathbb{G}\to\mathbb{U}(\mathcal{X}')$. Suppose $\mathsf{T}:\mathcal{X}\to\mathcal{X}'$ is a linear equivariant operator such *that* $\bar{\rho}_{\chi'}T = T\bar{\rho}_{\chi}$ *. If the irreducible representations are not equivalent, i.e.,* $\bar{\rho}_{\chi} \nsim \bar{\rho}_{\chi'}$ *, then* T *is the trivial (or zero) map. Conversely, if* $\bar{p}_x \sim \bar{p}_{x'}$, then T *is a constant multiple of an isomorphism [\(def. 4\)](#page-2-0). Denoting* I *as the identity operator, this can be expressed as:*

$$
\bar{\rho}_{\mathcal{X}} \nsim \bar{\rho}_{\mathcal{X}'} \iff \mathbf{0}_{\mathcal{X}'} = \mathsf{T} \mathbf{h} \mid \forall \mathbf{h} \in \mathcal{X} \tag{11a}
$$

$$
\bar{\rho}_{\mathcal{X}} \sim \bar{\rho}_{\mathcal{X}'} \iff \qquad \qquad \mathsf{T} = \alpha \mathsf{U} \mid \alpha \in \mathbb{C}, \mathsf{U} \cdot \mathsf{U}^H = \mathsf{I} \tag{11b}
$$

$$
\bar{\rho}_{\mathcal{X}} = \bar{\rho}_{\mathcal{X}'} \iff \mathsf{T} = \alpha \mathsf{I} \tag{11c}
$$

For intiution refeer to the following blog [post](https://terrytao.wordpress.com/2011/01/23/the-peter-weyl-theorem-and-non-abelian-fourier-analysis-on-compact-groups/)

Definition 3 (Group stable space & Group irreducible stable spaces) *Let* $\rho_X : \mathbb{G} \to \mathbb{U}(\mathcal{X})$ *be a unitary representation on the Hilbert space X*. A subspace $X' ⊆ X$ is said to be $\mathbb G$ -stable if

$$
\rho_{\mathcal{X}}(g)\mathbf{h}\in\mathcal{X}'\quad|\mathbf{h}\in\mathcal{X}'\quad\forall\quad\mathbf{w}\in W,g\in\mathbb{G}.\tag{12}
$$

If the only \mathbb{G} -stable subspaces of \mathcal{X}' are \mathcal{X}' itself and $\{0\}$, the space is said to be an irreducible G*-stable space.*

Definition 4 (Homomorphism, Isomorphism and equivariant linear maps) *Let* G *be a symmetry group and* X *and* X ′ *be two distinct symmetric Hilbert spaces endowed with unitary representations* $\rho_{\mathcal{X}} : \mathbb{G} \to \mathbb{U}(\mathcal{X})$ *and* $\rho_{\mathcal{X}'} : \mathbb{G} \to \mathbb{U}(\mathcal{X}')$ *, respectively.*

A linear map $\mathsf{T}: \mathcal{X} \to \mathcal{X}'$ is said to be \mathbb{G} -equivariant if it commutes with the group represen*tations:* $\rho_{\mathcal{X}'}(g)T = T\rho_{\mathcal{X}}(g) \mid \forall g \in \mathbb{G}$. The space of all \mathbb{G} -equivariant linear maps is refered to as the space of homomorphisms (structure preserving maps) and its denoted as $Hom_{\mathbb{G}}(\mathcal{X},\mathcal{X}')$ The *spaces are said to be isomorphic if the* G*-equivariant map is invertible. The space of all invertible* \mathbb{G} -equivariant linear maps between $\mathcal X$ and $\mathcal X'$ is denoted as $Iso_{\mathbb{G}}(\mathcal X,\mathcal X')\subset Hom_{\mathbb{G}}(\mathcal X,\mathcal X').$

Graphically, the diagrams of a homomorphism and isomorphism between X *and* X' *are:*

$$
\mathcal{X} \xrightarrow{\rho_{\mathcal{X}}} \mathcal{X} \qquad \mathsf{T} \in \mathit{Hom}_{\mathbb{G}}(\mathcal{X}, \mathcal{X}') \qquad \qquad \mathcal{X} \xrightarrow{\rho_{\mathcal{X}}} \mathcal{X} \qquad \mathsf{T} \in \mathit{Iso}_{\mathbb{G}}(\mathcal{X}, \mathcal{X}') \qquad (13)
$$
\n
$$
\downarrow \mathsf{T} \qquad \qquad \downarrow \mathsf{T} \qquad \qquad \downarrow \mathsf{T} \qquad \qquad \downarrow \mathsf{T}
$$
\n
$$
\mathcal{X}' \xrightarrow{\rho_{\mathcal{X}'}} \mathcal{X}' \qquad \qquad \downarrow \mathsf{T}
$$
\n
$$
\mathcal{X}' \xrightarrow{\rho_{\mathcal{X}'}} \mathcal{X}' \qquad \qquad \downarrow \mathsf{T}
$$
\n
$$
\mathcal{X}' \xrightarrow{\rho_{\mathcal{X}'}} \mathcal{X}' \qquad \qquad \downarrow \mathsf{T}
$$
\n
$$
\mathcal{X}' \xrightarrow{\rho_{\mathcal{X}'}} \mathcal{X}' \qquad \qquad \downarrow \mathsf{T}
$$
\n
$$
\mathsf{Isomorphism} \qquad \qquad \downarrow \mathsf{T}
$$
\n
$$
\mathsf{T} \xrightarrow{\rho_{\mathcal{X}'}} \mathsf{T} \xrightarrow{\rho_{\mathcal{X}'}} \mathsf{T} \xrightarrow{\rho_{\mathcal{X}'}} \mathsf{T}
$$
\n
$$
\mathsf{T}
$$

16