Notation

Numbers and Arrays	
x	A scalar, or scalar function $x(\cdot)$
x	A vector, or vector-valued function $oldsymbol{x}(\cdot)$
$\boldsymbol{x}_1 \oplus \boldsymbol{x}_2$	Direct sum (stacking) of vectors, such that $m{x}_1 \oplus m{x}_2 := [m{x}_1 \\ m{x}_2]$
K	A matrix
$oldsymbol{A} \oplus oldsymbol{B}$	Direct sum of matrices, such that $A \oplus B := \begin{bmatrix} A & O \\ O & B \end{bmatrix}$
K	A linear operator
$A \oplus B$	Direct sum of linear operators, such that $A \oplus B := \begin{bmatrix} A & O \\ O & B \end{bmatrix}$
Ι	Identity matrix
I	Identity operator
Sets, Vector Spaces, and Function spaces	
$\mathcal{X}, \mathcal{Z}, \mathcal{H}, \mathcal{F}$	A vector/Hilbert space
$\mathbb{I}_{\mathcal{X}}$	A basis set of the vector space \mathcal{X}
\mathbb{R},\mathbb{C}	The set of real and complex numbers
$\mathcal{X}\oplus\mathcal{Y}$	Direct sum of vector spaces $\mathcal X$ and $\mathcal Y$ such that if $x \in \mathcal X$ and $y \in \mathcal Y$, then
	$\boldsymbol{x}\oplus\boldsymbol{y}\in\mathcal{X}\oplus\mathcal{Y}$
${\cal F}$	A function space
$f_{\boldsymbol{\alpha}} \in \mathcal{F}$	A function in the function space \mathcal{F} , represented with the coefficients $\boldsymbol{\alpha}$ on a chosen basis $\mathbb{I}_{\mathcal{F}} = \{\hat{f}_1, \dots\}$, such that $f_{\boldsymbol{\alpha}}(\cdot) = \sum_{i=1}^m \alpha_i \hat{f}_i(\cdot)$, given $\boldsymbol{\alpha} = [\alpha_1, \dots]$.
Group and representation theory	
\mathbb{G}	A symmetry group
g,g_1,g_a	A symmetry group element
$g \triangleright \boldsymbol{x}$	The (left) group action of g on x defined by $g \triangleright x := \rho_{\mathcal{X}}(g)\mathcal{X}$, for a chosen basis $\mathbb{I}_{\mathcal{X}}$
$ ho_{\mathcal{X}}$	A representation of the group $\mathbb G$ on the vector space $\mathcal X,$ defined for a chosen
	basis $\mathbb{I}_{\mathcal{X}}$
$ ho_{\mathcal{X}}(g)$	Representation of the group element g on the vector space \mathcal{X} , defined for a chosen basis $\mathbb{I}_{\mathcal{X}}$
$ ho_\mathcal{X}\oplus ho_\mathcal{Y}$	Direct sum of group representations, such that $\rho_{\mathcal{X}} \oplus \rho_{\mathcal{Y}} := \begin{bmatrix} \rho_{\mathcal{X}} & \\ \rho_{\mathcal{Y}} \end{bmatrix}$
$\mathbb{G} oldsymbol{x}$	The group orbit of x , defined as $\mathbb{G}x := \{g \triangleright x \mid g \in \mathbb{G}\}$
$\mathbb{G}_a imes \mathbb{G}_b$	Direct product of groups \mathbb{G}_a and \mathbb{G}_b
$\mathbb{U}(\mathcal{X})$	Unitary group on the vector space \mathcal{X}
$\mathbb{GL}(\mathcal{X})$	General Linear group on the vector space \mathcal{X}
\mathbb{C}_n	Cyclic group of order n
\mathbb{K}_4	Klein four-group

Appendix I. Appendix

I.1. Finite dimensional function spaces of observable functions

Given a set of observable functions $\mathbb{I}_{\mathcal{X}} = \{x_1, \ldots, x_m \mid x_i : \Omega \mapsto \mathbb{R}, \forall i \in [1, m]\}$, we can interpret these functions as the components of a vector-valued function $\boldsymbol{x} = [x_1, \ldots] : \Omega \mapsto \mathbb{R}^m$,

that enables the numerical representation of the state ω as a point in a finite-dimensional vector space $\boldsymbol{x}(\omega) \in \mathcal{X} \subseteq \mathbb{R}^m$. For the objective of our work, we will also interprete $\mathbb{I}_{\mathcal{X}}$ as the basis set of a finite-dimensional function space $\mathcal{F}_{\mathcal{X}} : \Omega \mapsto \mathbb{R}$, such that any observable function $x \in \mathcal{F}_{\mathcal{X}}$ is defined by the linear combination of the basis functions $x_{\alpha}(\omega) := \langle \boldsymbol{x}(\cdot), \boldsymbol{\alpha} \rangle = \sum_{i=1}^m \alpha_i x_i(\omega) = \boldsymbol{x}(\omega)^{\mathsf{T}} \boldsymbol{\alpha}$. Where $\boldsymbol{\alpha} = [\alpha_1, \ldots] \in \mathbb{R}^m$ are the coefficients of x in the basis of $\mathcal{F}_{\mathcal{X}}$, and the notation $x_{\alpha}(\cdot)$ highlight the relationship between the function x and its coefficient vector representation $\boldsymbol{\alpha}$.

I.1.1. Symmetries of the state representation

When the dynamical system possess a state symmetry group \mathbb{G} (def. 1), appropriate numerical representations of the state are constrained to be \mathbb{G} -equivariant vector-value functions (see eq. (8) and prop. 2). This ensures that the symmetry relationship between any state $\omega \in \Omega$ and its symmetric states $\mathbb{G}\omega := \{g \triangleright \omega \mid g \in \mathbb{G}\}$ is preserved in the representation space \mathcal{X} , such that $\mathbb{G}\boldsymbol{x}(\omega) = \{g \triangleright \boldsymbol{x}(\omega) \mid g \in \mathbb{G}\} \subset \mathcal{X}$.

$$\begin{array}{c}
\omega \xrightarrow{g \in \mathbb{G}} g \triangleright \omega \quad (8) \\
\downarrow x \qquad \downarrow x \\
x(\omega) \xrightarrow{g \in \mathbb{G}} g \triangleright x(\omega)
\end{array}$$

I.1.2. Symmetric function spaces

When \mathcal{X} is a \mathbb{G} -symmetric space, the group is defined to act on any chosen basis set of the space, including the observable functions $\mathbb{I}_{\mathcal{X}}$. This, in turn, ensures that the finite-dimensional function space span $(\mathbb{I}_{\mathcal{X}}) := \mathcal{F}_{\mathcal{X}} : \Omega \mapsto \mathbb{R}$ features the symmtry group \mathbb{G} , being the elements of the space \mathbb{G} equivariant functions, i.e., $\mathcal{F}_{\mathcal{X}} = \{x \mid g \triangleright x_{\alpha}(\omega) = x_{\alpha}(g^{-1} \triangleright \omega) = x_{g \triangleright \alpha}(\omega), \forall g \in \mathbb{G}\}$ (see def. 2). Where the notation $g \triangleright x_{\alpha}(\omega) = x_{g \triangleright \alpha}(\omega)$ describes the action of a symmetry transformation on a observable function, as a linear transformation on its coefficients vector representation α .

I.2. Group and representation theory

Definition 2 (Group action on a function space) *The (left) action of a group* \mathbb{G} *on the space of functions* $\mathcal{X} : \Omega \to \mathbb{C}$ *, where* Ω *is a set with symmetry group* \mathbb{G} *, is defined as:*

From an algebraic perspective, the action inversion (contragredient representation) emerges to ensure that the symmetry group in the function space is a homomorphism of the group in the domain $(g_1 \triangleright g_2) \triangleright x(\omega) \doteq x((g_1 \triangleright g_2)^{-1} \triangleright \omega)$. Which can be proven by a couple of algebraic steps:

$$(g_1 \triangleright (g_2 \triangleright x))(\omega) = (g_1 \triangleright x_{g_2})(\omega) = g_2 \triangleright x(g_1^{-1}\omega) = x((g_2^{-1} \triangleright g_1^{-1}) \triangleright \omega) = x((g_1 \triangleright g_2)^{-1} \triangleright \omega)$$
(9b)

From a geometric perspective, when \mathcal{X} is a separable Hilbert space, each function can be associated with its vector of coefficients representation $x_{\alpha}(\cdot) := \sum_{i=1}^{m} \alpha_i x_i(\cdot) = \mathbf{x}(\cdot)^{\mathsf{T}} \alpha$. Here, $\mathbf{x} = [x_1, \ldots]$ represents the basis functions of \mathcal{X} . As the function space is symmetric, the group \mathbb{G} acts on the basis set, leading to a group representation acting on the basis functions $g \triangleright \mathbf{x}(\cdot) = \rho_{\mathcal{X}}(g)\mathbf{x}(\cdot)$. The unitary representation of the group \mathbb{G} on the function space is denoted by $\rho_{\mathcal{X}}$: $\mathbb{G} \to \mathbb{U}(\mathcal{X})$, which is an invertible matrix/operator. This representation enable us to interpret the symmetry transformations of the function space as point transformations, where the points are the function's coefficient vector representation α , that is:

$$g \triangleright x_{\alpha}(\cdot) := \sum_{i=1}^{m} \alpha_{i} x_{i} (g^{-1} \triangleright \cdot)$$
$$= (\boldsymbol{x} (g^{-1} \triangleright \cdot))^{\mathsf{T}} \boldsymbol{\alpha}$$
$$= (g^{-1} \triangleright \boldsymbol{x} (\cdot))^{\mathsf{T}} \boldsymbol{\alpha}$$
$$= \boldsymbol{x} (\cdot)^{\mathsf{T}} g \triangleright \boldsymbol{\alpha}$$
$$= x_{g \triangleright \alpha} (\cdot)$$
(10)

Lemma 1 (Schur's Lemma for Unitary representations (Knapp, 1986, Prop 1.5)) Consider two Hilbert spaces, \mathcal{X} and \mathcal{X}' , each with their respective irreducible unitary representations, denoted as $\bar{\rho}_{\mathcal{X}}: \mathbb{G} \to \mathbb{U}(\mathcal{X})$ and $\bar{\rho}_{\mathcal{X}'}: \mathbb{G} \to \mathbb{U}(\mathcal{X}')$. Suppose $T: \mathcal{X} \to \mathcal{X}'$ is a linear equivariant operator such that $\bar{\rho}_{\mathcal{X}'}T = T\bar{\rho}_{\mathcal{X}}$. If the irreducible representations are not equivalent, i.e., $\bar{\rho}_{\mathcal{X}} \not\sim \bar{\rho}_{\mathcal{X}'}$, then T is the trivial (or zero) map. Conversely, if $\bar{\rho}_{\mathcal{X}} \sim \bar{\rho}_{\mathcal{X}'}$, then T is a constant multiple of an isomorphism (def. 4). Denoting I as the identity operator, this can be expressed as:

$$\bar{\rho}_{\mathcal{X}} \nsim \bar{\rho}_{\mathcal{X}'} \iff \qquad \mathbf{0}_{\mathcal{X}'} = \mathsf{T} \mathbf{h} \mid \forall \mathbf{h} \in \mathcal{X}$$
(11a)

$$\bar{\rho}_{\mathcal{X}} \sim \bar{\rho}_{\mathcal{X}'} \iff \qquad \qquad \mathsf{T} = \alpha \mathsf{U} \mid \alpha \in \mathbb{C}, \mathsf{U} \cdot \mathsf{U}^H = \mathsf{I}$$
(11b)

$$\bar{\rho}_{\chi} = \bar{\rho}_{\chi'} \iff T = \alpha I$$
 (11c)

For intiution refeer to the following blog post

Definition 3 (Group stable space & Group irreducible stable spaces) Let $\rho_{\mathcal{X}} : \mathbb{G} \to \mathbb{U}(\mathcal{X})$ be a unitary representation on the Hilbert space \mathcal{X} . A subspace $\mathcal{X}' \subseteq \mathcal{X}$ is said to be \mathbb{G} -stable if

$$\rho_{\mathcal{X}}(g)\boldsymbol{h} \in \mathcal{X}' \quad | \boldsymbol{h} \in \mathcal{X}' \quad \forall \quad \boldsymbol{w} \in W, g \in \mathbb{G}.$$
(12)

If the only \mathbb{G} -stable subspaces of \mathcal{X}' are \mathcal{X}' itself and $\{0\}$, the space is said to be an irreducible \mathbb{G} -stable space.

Definition 4 (Homomorphism, Isomorphism and equivariant linear maps) Let \mathbb{G} be a symmetry group and \mathcal{X} and \mathcal{X}' be two distinct symmetric Hilbert spaces endowed with unitary representations $\rho_{\mathcal{X}} : \mathbb{G} \to \mathbb{U}(\mathcal{X})$ and $\rho_{\mathcal{X}'} : \mathbb{G} \to \mathbb{U}(\mathcal{X}')$, respectively.

A linear map $T : \mathcal{X} \to \mathcal{X}'$ is said to be \mathbb{G} -equivariant if it commutes with the group representations: $\rho_{\mathcal{X}'}(g)T = T\rho_{\mathcal{X}}(g) \mid \forall g \in \mathbb{G}$. The space of all \mathbb{G} -equivariant linear maps is refered to as the space of homomorphisms (structure preserving maps) and its denoted as $Homo_{\mathbb{G}}(\mathcal{X}, \mathcal{X}')$ The spaces are said to be isomorphic if the \mathbb{G} -equivariant map is invertible. The space of all invertible \mathbb{G} -equivariant linear maps between \mathcal{X} and \mathcal{X}' is denoted as $Iso_{\mathbb{G}}(\mathcal{X}, \mathcal{X}') \subset Homo_{\mathbb{G}}(\mathcal{X}, \mathcal{X}')$.

Graphically, the diagrams of a homomorphism and isomorphism between X and X' are: