ORDONEZ-APRAEZ KOSTIC TURRISI NOVELLI MASTALLI SEMINI PONTIL

Notation
Numbers and Arrays

x A scalar, or scalar function z(-)

T A vector, or vector-valued function x(-)

T D xo Direct sum (stacking) of vectors, such that 1 ® xs := [5}]

K A matrix

Ao B Direct sum of matrices, such that A © B := [é g]

K A linear operator

A®B Direct sum of linear operators, such that A® B := [§ 9|

I Identity matrix

I Identity operator

Sets, Vector Spaces, and Function spaces

X, Z,H, F A vector/Hilbert space

Iy A basis set of the vector space X’

R,C The set of real and complex numbers

Xp)Y Direct sum of vector spaces X and ) such that if x € X and y € ), then
rhyeXe)y

F A function space

fa€F A function in the function space F, represented with the coefficients c on a cho-
sen basis [x = {f1,...}, such that fo(-) = S o fi(+), given a = [y, .. ..

Group and representation theory

G A symmetry group

9,91, 9a A symmetry group element

go The (left) group action of g on @ defined by g » & := py(g)X, for a chosen
basis Iy

Px A representation of the group G on the vector space &', defined for a chosen
basis Iy

px(9) Representation of the group element g on the vector space &', defined for a cho-
sen basis Iy

px @ py Direct sum of group representations, such that py ® py = [ 5y, ]

Gz The group orbit of «, defined as Gz := {gv x | g € G}

G, x G, Direct product of groups G, and G,

U(x) Unitary group on the vector space X’

GL(X) General Linear group on the vector space X’

Cn Cyclic group of order n

Ky Klein four-group

Appendix I. Appendix

I.1. Finite dimensional function spaces of observable functions

Given a set of observable functions Iy = {z1,...,zp | z; : Q@ — R,Vi € [1,m]}, we can

interprete these functions as the components of a vector-valued function € = [z1,...] : Q — R™,
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that enables the numerical representation of the state w as a point in a finite-dimensional vector space
x(w) € X C R™. For the objective of our work, we will also interprete Iy as the basis set of a finite-
dimensional function space Fx : {2 — R, such that any observable function = € Fy is defined by
the linear combination of the basis functions z4(w) := (z(-), ) = >, azi(w) = z(w)Ta.
Where @ = [a,...] € R™ are the coefficients of z in the basis of Fx, and the notation zq( -)
highlight the relationship between the function x and its coefficient vector representation cx.

I.1.1. SYMMETRIES OF THE STATE REPRESENTATION

When the dynamical system possess a state symmetry group G (def. 1),

appropriate numerical representations of the state are constrained to be w J<C gow (8
G-equivariant vector-value functions (see eq. (8) and prop. 2). This en-

sures that the symmetry relationship between any state w € {2 and its Jm lm
symmetric states Gw := {g > w [ g € G} is preserved in the representa- 4 (y) I8, (w)

tion space X, such that Gz (w) = {grx(w) | g€ G} C X.

I1.1.2. SYMMETRIC FUNCTION SPACES

When X is a G-symmetric space, the group is defined to act on any chosen basis set of the space,
including the observable functions Iy. This, in turn, ensures that the finite-dimensional function
space span(Iy) := Fx : Q — R features the symmtry group G, being the elements of the space G-
equivariant functions, i.e., Fx = {z | g > Za(w) = 2a(g7! » w) = Tga(w), Vg € G} (see def. 2).
Where the notation g > Za(w) = Z4.a(w) describes the action of a symmetry transformation on a
observable function, as a linear transformation on its coefficients vector representation cx.

I.2. Group and representation theory

Definition 2 (Group action on a function space) The (left) action of a group G on the space of
functions X : Q0 — C, where §) is a set with symmetry group G, is defined as:

p): GxX — X

(g,7(w)) — grva(w) =g (9a)

-1y w)
From an algebraic perspective, the action inversion (contragredient representation) emerges to en-
sure that the symmetry group in the function space is a homomorphism of the group in the domain

(915 g2) > z(w) = 2((g91 > go) ' & w). Which can be proven by a couple of algebraic steps:

(91> (92> 2)) (W) = (91> 7gy) () = g2 > 2(g97 'w) = (g5 > g7 ) P w) =2((91> g2) " > w)
(9b)

From a geometric perspective, when X is a separable Hilbert space, each function can be associated
with its vector of coefficients representation x(-) = Y ;=  oxi(-) = x(-)To. Here, ©x =
[x1,...] represents the basis functions of X. As the function space is symmetric, the group G
acts on the basis set, leading to a group representation acting on the basis functions g > x(-) =
px(g)x (). The unitary representation of the group G on the function space is denoted by py :
G — U(X), which is an invertible matrix/operator. This representation enable us to interpret the
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symmetry transformations of the function space as point transformations, where the points are the
function’s coefficient vector representation o, that is:

g o) = Zaixi(g_l > )
i=1

=(z(g7'> )T

=(g ' ra() o

=z(-)gra

= Zgpal:) (10)

Lemma 1 (Schur’s Lemma for Unitary representations (Knapp, 1986, Prop 1.5)) Consider two
Hilbert spaces, X and X', each with their respective irreducible unitary representations, denoted as
pr:G = U(X)and pr - G — U(X"). Suppose T : X — X' is a linear equivariant operator such
that pT = Tpx. If the irreducible representations are not equivalent, i.e., py ~ Py, then T is
the trivial (or zero) map. Conversely, if px ~ px, then T is a constant multiple of an isomorphism
(def. 4). Denoting | as the identity operator, this can be expressed as:

Py ® Pyt > Oy =Th|VheX (11a)
D~ Dot = T=aU|aecC,U -UT =] (11b)
Px = Pyt T =al (11¢)

For intiution refeer to the following blog post

Definition 3 (Group stable space & Group irreducible stable spaces) Ler py : G — U(X) be
a unitary representation on the Hilbert space X. A subspace X' C X is said to be G-stable if

pr(gghe X' |heX! ¥V weW,geG. (12)

If the only G-stable subspaces of X' are X' itself and {0}, the space is said to be an irreducible
G-stable space.

Definition 4 (Homomorphism, Isomorphism and equivariant linear maps) Let G be a symme-
try group and X and X' be two distinct symmetric Hilbert spaces endowed with unitary represen-
tations py : G — U(X) and py : G — U(X'), respectively.

Alinear map T : X — X' is said to be G-equivariant if it commutes with the group represen-
tations: pr(9)T = Tpx(g) | VY g € G. The space of all G-equivariant linear maps is refered to
as the space of homomorphisms (structure preserving maps) and its denoted as Homog (X, X') The
spaces are said to be isomorphic if the G-equivariant map is invertible. The space of all invertible
G-equivariant linear maps between X and X' is denoted as Isog (X, X") C Homog (X, X").

Graphically, the diagrams of a homomorphism and isomorphism between X and X' are:

X x T e Homog (X, X' XY x Telog(X,X)  (13)
lT lT T T
X! LYy xRy

—_——— ——

Homomorphism Isomorphism

16


https://terrytao.wordpress.com/2011/01/23/the-peter-weyl-theorem-and-non-abelian-fourier-analysis-on-compact-groups/

	Appendix
	Finite dimensional function spaces of observable functions
	Symmetries of the state representation
	Symmetric function spaces

	Group and representation theory


