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Notation

Numbers and Arrays
x A scalar, or scalar function x(·)
x A vector, or vector-valued function x(·)
x1 ⊕ x2 Direct sum (stacking) of vectors, such that x1 ⊕ x2 := [ x1

x2 ]
K A matrix
A⊕B Direct sum of matrices, such that A⊕B :=

[
A O
O B

]
K A linear operator
A⊕ B Direct sum of linear operators, such that A⊕ B :=

[
A O
O B

]
I Identity matrix
I Identity operator

Sets, Vector Spaces, and Function spaces
X ,Z,H,F A vector/Hilbert space
IX A basis set of the vector space X
R,C The set of real and complex numbers
X ⊕ Y Direct sum of vector spaces X and Y such that if x ∈ X and y ∈ Y , then

x⊕ y ∈ X ⊕ Y
F A function space
fα ∈ F A function in the function space F , represented with the coefficients α on a cho-

sen basis IF = {f̂1, . . . }, such that fα(·) =
∑m

i=1 αif̂i(·), given α = [α1, . . . ].

Group and representation theory
G A symmetry group
g, g1, ga A symmetry group element
g ▷ x The (left) group action of g on x defined by g ▷ x := ρX (g)X , for a chosen

basis IX
ρX A representation of the group G on the vector space X , defined for a chosen

basis IX
ρX (g) Representation of the group element g on the vector space X , defined for a cho-

sen basis IX
ρX ⊕ ρY Direct sum of group representations, such that ρX ⊕ ρY :=

[ ρX
ρY

]
Gx The group orbit of x, defined as Gx := {g ▷ x | g ∈ G}
Ga ×Gb Direct product of groups Ga and Gb

U(X ) Unitary group on the vector space X
GL(X ) General Linear group on the vector space X
Cn Cyclic group of order n
K4 Klein four-group

Appendix I. Appendix

I.1. Finite dimensional function spaces of observable functions

Given a set of observable functions IX = {x1, . . . , xm | xi : Ω 7→ R, ∀i ∈ [1,m]}, we can
interprete these functions as the components of a vector-valued function x = [x1, . . . ] : Ω 7→ Rm,
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that enables the numerical representation of the state ω as a point in a finite-dimensional vector space
x(ω) ∈ X ⊆ Rm. For the objective of our work, we will also interprete IX as the basis set of a finite-
dimensional function space FX : Ω 7→ R, such that any observable function x ∈ FX is defined by
the linear combination of the basis functions xα(ω) := ⟨x( · ),α⟩ =

∑m
i=1 αixi(ω) = x(ω)⊺α.

Where α = [α1, . . . ] ∈ Rm are the coefficients of x in the basis of FX , and the notation xα( · )
highlight the relationship between the function x and its coefficient vector representation α.

I.1.1. SYMMETRIES OF THE STATE REPRESENTATION

ω
g∈G

x

��

g ▷ ω

x

��

x(ω)
g∈G

g ▷ x(ω)

(8)

When the dynamical system possess a state symmetry group G (def. 1),
appropriate numerical representations of the state are constrained to be
G-equivariant vector-value functions (see eq. (8) and prop. 2). This en-
sures that the symmetry relationship between any state ω ∈ Ω and its
symmetric states Gω := {g ▷ ω | g ∈ G} is preserved in the representa-
tion space X , such that Gx(ω) = {g ▷ x(ω) | g ∈ G} ⊂ X .

I.1.2. SYMMETRIC FUNCTION SPACES

When X is a G-symmetric space, the group is defined to act on any chosen basis set of the space,
including the observable functions IX . This, in turn, ensures that the finite-dimensional function
space span(IX ) := FX : Ω 7→ R features the symmtry group G, being the elements of the space G-
equivariant functions, i.e., FX = {x | g ▷ xα(ω) = xα(g

−1 ▷ ω) = xg▷α(ω), ∀g ∈ G} (see def. 2).
Where the notation g ▷ xα(ω) = xg▷α(ω) describes the action of a symmetry transformation on a
observable function, as a linear transformation on its coefficients vector representation α.

I.2. Group and representation theory

Definition 2 (Group action on a function space) The (left) action of a group G on the space of
functions X : Ω → C, where Ω is a set with symmetry group G, is defined as:

(▷) : G ×X −→ X
(g, x(ω)) −→ g ▷ x(ω)

.
= x(g−1 ▷ ω)

(9a)

From an algebraic perspective, the action inversion (contragredient representation) emerges to en-
sure that the symmetry group in the function space is a homomorphism of the group in the domain
(g1 ▷ g2) ▷ x(ω)

.
= x((g1 ▷ g2)

−1 ▷ ω). Which can be proven by a couple of algebraic steps:

(g1 ▷ (g2 ▷ x))(ω) = (g1 ▷ xg2)(ω) = g2 ▷ x(g
−1
1 ω) = x((g−1

2 ▷ g−1
1 ) ▷ ω) = x((g1 ▷ g2)

−1 ▷ ω)
(9b)

From a geometric perspective, when X is a separable Hilbert space, each function can be associated
with its vector of coefficients representation xα( · ) :=

∑m
i=1 αixi( · ) = x( · )⊺α. Here, x =

[x1, . . . ] represents the basis functions of X . As the function space is symmetric, the group G
acts on the basis set, leading to a group representation acting on the basis functions g ▷ x( · ) =
ρX (g)x( · ). The unitary representation of the group G on the function space is denoted by ρX :
G → U(X ), which is an invertible matrix/operator. This representation enable us to interpret the
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symmetry transformations of the function space as point transformations, where the points are the
function’s coefficient vector representation α, that is:

g ▷ xα( · ) :=
m∑
i=1

αixi(g
−1 ▷ · )

= (x(g−1 ▷ · ))⊺α
= (g−1 ▷ x( · ))⊺α
= x( · )⊺g ▷ α
= xg▷α( · ) (10)

Lemma 1 (Schur’s Lemma for Unitary representations (Knapp, 1986, Prop 1.5)) Consider two
Hilbert spaces, X and X ′, each with their respective irreducible unitary representations, denoted as
ρ̄X : G → U(X) and ρ̄X′ : G → U(X ′). Suppose T : X → X ′ is a linear equivariant operator such
that ρ̄X′T = Tρ̄X . If the irreducible representations are not equivalent, i.e., ρ̄X ≁ ρ̄X′ , then T is
the trivial (or zero) map. Conversely, if ρ̄X ∼ ρ̄X′ , then T is a constant multiple of an isomorphism
(def. 4). Denoting I as the identity operator, this can be expressed as:

ρ̄X ≁ ρ̄X′ ⇐⇒ 0X ′ = Th | ∀ h ∈ X (11a)

ρ̄X ∼ ρ̄X′ ⇐⇒ T = αU | α ∈ C,U · UH = I (11b)

ρ̄X = ρ̄X′ ⇐⇒ T = αI (11c)

For intiution refeer to the following blog post

Definition 3 (Group stable space & Group irreducible stable spaces) Let ρX : G → U(X ) be
a unitary representation on the Hilbert space X . A subspace X ′ ⊆ X is said to be G-stable if

ρX (g)h ∈ X ′ | h ∈ X ′ ∀ w ∈W, g ∈ G. (12)

If the only G-stable subspaces of X ′ are X ′ itself and {0}, the space is said to be an irreducible
G-stable space.

Definition 4 (Homomorphism, Isomorphism and equivariant linear maps) Let G be a symme-
try group and X and X ′ be two distinct symmetric Hilbert spaces endowed with unitary represen-
tations ρX : G → U(X ) and ρX ′ : G → U(X ′), respectively.

A linear map T : X → X ′ is said to be G-equivariant if it commutes with the group represen-
tations: ρX ′(g)T = TρX (g) | ∀ g ∈ G. The space of all G-equivariant linear maps is refered to
as the space of homomorphisms (structure preserving maps) and its denoted as HomoG(X ,X ′) The
spaces are said to be isomorphic if the G-equivariant map is invertible. The space of all invertible
G-equivariant linear maps between X and X ′ is denoted as IsoG(X ,X ′) ⊂ HomoG(X ,X ′).

Graphically, the diagrams of a homomorphism and isomorphism between X and X ′ are:

X
ρX

T
��

X
T
��

X ′ ρX X ′︸ ︷︷ ︸
Homomorphism

T ∈ HomoG(X ,X ′) X
ρX

T

X
T

X ′ ρX ′
X ′︸ ︷︷ ︸

Isomorphism

T ∈ IsoG(X ,X ′) (13)
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